
 Procedural Modeling & Animation:
 Moose Automaton

 Creator & Author : Lyuying Guo

 Software : Houdini 20.5.278

 Languages : VEX, HScript

 Class : SCAD VSFX721 Project3

 Professor : Deborah Fowler

 Academic Quarter : Spring 2025

 Document creation time : May 26, 2025

 Statistics
 Rendering

 ● Renderer : Karma CPU
 ● Average Render Time :1.8 min/frame (SCAD Render Farm)
 ● Resolution : 1920 x 1080
 ● Number of Lights : 3 (1 Dome Light, 1 Distant Light, 1 Area Light)

 Sampling (Karma Render Settings default)

 ● Primary Samples : 9
 ● Diffuse Limit : 1
 ● Reflection Limit : 4
 ● Refraction Limit : 4
 ● Volume Limit : 0
 ● SSS Limit : 0
 ● Color Limit : 10

 Geometry

 ● Primitives : 1,501
 ● Points : 2,367
 ● Mesh : 15

 General Description
 The prompt of this project is to procedurally create a mechanical moving device in Houdini. I
 chose to imitate the mechanics of a LEGO moose automaton to explore how procedural
 modeling and animation can be utilized to create the impression of organic life.

 Left: Reference

 Right: Final Render

 Technical Breakdown

 Procedural Animation
 Mechanism 1: Running Legs

 Problem : 2-Point Constraint Animation

 Solution : Dot Product, Pythagorean Theorem

 The core problem to solve in this project is to “fake” a running leg mechanism with math. No
 RBD simulation is used. My core solution is to construct a triangle from the upper leg, lower
 leg, and an imaginary rod that connects those two. Utilizing the dot product function, dot(), in
 Houdini VEX, I calculate the angle between two existing edges with known values.
 Afterwards, I use those angle values to calculate how much the upper leg and lower leg need
 to rotate from a referential x-axis in order for the triangle relationship to exist, regardless of
 the frame we are on ($F).

 This method is adapted from the sample file created by Dr. Deborah Fowler, my professor for
 this class. The sample file builds the Dot Product calculation with Pythagorean Theorem from
 scratch. I re-wrote the code in a way that approaches the problem from vectors and dot
 product and utilizes the dot() function in Houdini in order to avoid typos in Pythagorean
 Theorem calculations.

 I built one leg with this method, then transformed and mirrored copies to form the other three
 legs. The two front legs have slightly different speeds to imitate the rhythm of a real moose
 running, which is achieved by adjusting the Rotate Z parameter in rot_crank (Transform
 node) differently. Rotate Z parameter has a HScript expression containing $F to make the
 animation change per frame.

 Mechanism 2: Rotating Neck & Head

 Problem : Rotation around a designated point

 Solution 1 : Pivot Transform (higher-level, artist friendly)

 Solution 2 : Matrix transformation (lower-level, graphics engineer friendly)

 The core idea is to move the pivot of the neck from the center of the mesh to one side (base
 of neck). To do that, the most straightforward way is to manually move the pivot, which is
 achieved by adding a Transform SOP after the neck mesh, and manually type in (or drag)
 numbers into the Pivot Translate parameters under the Pivot Transformation drop-down
 menu. (P.S. Houdini does not offer a way to directly manipulate pivots in the viewport like the
 Maya “d” hotkey.)

 Another graphics-engineer-friendly approach utilizes the logic of OpenGL matrix
 transformation . We create a neck at world origin, translate the neck to where it can rotate
 naturally around the origin (neck’s pivot. * Any Houdini mesh’s real pivot is always at world
 origin unless you explicitly change it in a Transform SOP > Pivot Transform), then move that
 whole system (mesh + pivot) to where you want it to be in the scene.

https://deborahrfowler.com/MathForVSFX/DotAndPythagorean/H18/dotPythagoreanInActionColorPointWrangle.hipnc
https://deborahrfowler.com/HoudiniResources/FAQ/Transformations/TeapotTransforms.hipnc
https://deborahrfowler.com/HoudiniResources/FAQ/Transformations/TeapotTransforms.hipnc

 To make the neck rotate around the tip of the neck, we add a copy of the same system on top
 and merge it into the neck.

 Both methods showcased below – the Switch node is to switch between the two methods.

 2. Procedural Modeling

 Procedural Modeling
 Model Type 1: Organic Boxes

 Most of the pieces that make up the body of the moose are made from a box with divisions,
 then using an Edit SOP to manually manipulate the points in the viewport, then applying a
 Poly Bevel SOP afterwards to smoothen the sharp edges. A key point here is to unwrap UVs
 before the SOP where I animate the models so that the models won’t swim in textures.

 Model Type 2: Curves (*Method credit to my classmate Itim Kongsakulvatanasook)

 All the parts making up the antlers are created with a Curve SOP with Primitive Type set to
 Bezier Curve, then applying a Sweep node after the curve with Surface Shape set to Round
 Tube to generate the mesh. The “Create Rounded Corners” option in the Curve SOP is
 extremely helpful for creating the major angle in the antlers.

 References
 Reference LEGO moose automaton:
 https://youtu.be/L6EW7HEzHT0?si=Sm3Em0w2p__wJ5lD

 Solving 2-Point Constraint problem with Dot Product explanation:
 https://deborahrfowler.com/MathForVSFX/DotProduct.html

 Sample Houdini file that solves 2-Point Constraint problem with Dot Product in VEX:
 https://deborahrfowler.com/MathForVSFX/DotAndPythagorean/H18/dotPythagoreanInAction
 ColorPointWrangle.hipnc

 Sample Houdini file that explains transformation order in Houdini:
 https://deborahrfowler.com/HoudiniResources/FAQ/Transformations/TeapotTransforms.hipnc

https://youtu.be/L6EW7HEzHT0?si=Sm3Em0w2p__wJ5lD
https://youtu.be/L6EW7HEzHT0?si=Sm3Em0w2p__wJ5lD
https://deborahrfowler.com/MathForVSFX/DotProduct.html
https://deborahrfowler.com/MathForVSFX/DotProduct.html
https://deborahrfowler.com/MathForVSFX/DotAndPythagorean/H18/dotPythagoreanInActionColorPointWrangle.hipnc
https://deborahrfowler.com/MathForVSFX/DotAndPythagorean/H18/dotPythagoreanInActionColorPointWrangle.hipnc
https://deborahrfowler.com/MathForVSFX/DotAndPythagorean/H18/dotPythagoreanInActionColorPointWrangle.hipnc
https://deborahrfowler.com/HoudiniResources/FAQ/Transformations/TeapotTransforms.hipnc
https://deborahrfowler.com/HoudiniResources/FAQ/Transformations/TeapotTransforms.hipnc

